191

Reactions of Phosphonitrilic Derivatives with Metal Carbonyls

By J. Dyson and N. L. PADDOCK

[Departments of Chemistry, Manchester University, (J.D.), and University of British Columbia, Vancouver 8, B.C., Canada, (N.L.P.)]*

MOLVBDENUM HEXACARBONYL reacts almost quantitatively with both octamethyl tetraphosphonitrile¹ and with its methiodide² ($N_4P_4Me_9$)+I⁻. The product from the first reaction is a yellow solid $N_4P_4Me_8$,Mo(CO)₄, which is stable in air, but in solution is sensitive to atmospheric oxygen. Its infrared spectrum (in Nujol) exhibits four bands in the carbonyl stretching region, as expected for C_{2v} symmetry, the phosphonitrile occupying two *cis*-positions of the molybdebum octahedron. On the basis of their positions and relative intensities,³ the carbonyl bands are assigned as: (1) Vibrations corresponding chiefly to movement of the *trans*-CO groups, at 1995 cm.⁻¹, (weak), A_1 ; 1904 cm.⁻¹, (strong), B_1 ; (2) vibrations of the *cis*-CO groups, at 1780 cm.⁻¹, (strong), A_1 ; 1760 cm.⁻¹, (strong), B_2 . The principal change in the phosphonitrilic part of the spectrum is the separation of the broad band centred at 1220 cm.⁻¹ in the parent molecule¹ into three bands, of lower average frequency, at 1146, 1165, and 1225 cm.⁻¹, consistent with the D_{2d} symmetry which the molecule approaches in the crystal.⁴ It seems most likely that the phosphonitrile is co-ordinated, without major structural change, through two nitrogen atoms at opposite ends of the molecule. The stretching frequencies of the *cis*-carbonyl groups are especially low as compared with (*e.g.*) those³ (1864, 1818 cm.⁻¹) for

* Present addresses: Department of Chemistry, St. Salvator's College, St. Andrews, (J.D.); Department of Chemistry, The University, Manchester 13, (N.L.P.).

the corresponding compound Mo(en)(CO)₄ of the stronger base ethylenediamine $[C_2H_4(NH_2)_2,$ $pK_a = 10.09$; $N_4P_4Me_8$, $pK_a = 5.75$]. Inspection of molecular models suggests that co-ordination is more likely to occur through $p\pi$ -orbitals at nitrogen than through the conventional lone-pair directions, and it is possible that the low frequencies are a result of greater charge transfer from the less

- ¹ H. T. Searle, Proc. Chem. Soc., 1959, 7. ² G. Allen, J. Dyson, and N. L. Paddock, Chem. and Ind., 1964, 1832.
- ⁸ C. S. Kraihanzel and F. A. Cotton, *Inorg. Chem.*, 1963, 2, 533.
 ⁴ M. W. Dougill, *J. Chem. Soc.*, 1961, 5471.

electronegative orbitals. Further structural studies are in progress. The phosphonitrilium salt, by contrast, displaces one molecule of carbon monoxide from $Mo(CO)_6$ or $Cr(CO)_6$, the products being formulated as (N₄P₄Me₉)⁺[(Mo,Cr) (CO)₅I]⁻, on the basis of their infrared spectra.

(Received, March 1st, 1966; Com. 136.)